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Abstract 

The ability to synthesize spoken language from text has greatly facilitated access to digital content with the 

advances in text-to-speech technology. However, effective TTS development for low-resource languages, 

such as Central Kurdish (CKB), still faces many challenges due mainly to the lack of linguistic information 

and dedicated resources. In this paper, we improve the Kurdish TTS system based on Tacotron by training the 

Kurdish WaveGlow vocoder on a 21-hour central Kurdish speech corpus instead of using a pre-trained English 

vocoder WaveGlow. Vocoder training on the target language corpus is required to accurately and fluently 

adapt phonetic and prosodic changes in Kurdish language. The effectiveness of these enhancements is that 

our model is significantly better than the baseline system with English pretrained models. In particular, our 

adaptive WaveGlow model achieves an impressive MOS of 4.91, which sets a new benchmark for Kurdish 

speech synthesis. On one hand, this study empowers the advanced features of the TTS system for Central 

Kurdish, and on the other hand, it opens the doors for other dialects in Kurdish and other related languages to 

further develop. 
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1. Introduction 

Text-to-speech has developed and evolved in the recent past, such that written text is converted to spoken 

language with most features of the intonation and cadence of a natural speaker (Tan et al., 2024); it is, 

therefore, an important application in many fields, for example, assistive technology for people with reading 

difficulties, interactive chatbots, advanced conversational AI, language learning platforms, or entertainment. 

At the heart of TTS research is speech synthesis, which is the ability to generate audio from text in a way that 

makes it natural speech for human level quality. Recent deep learning breakthroughs led to new models that 

would cover end-to-end speech synthesis. Speech synthesis technologies such as Char2Wav by Sotelo et al., 

2017, Tacotron by Wang et al., 2017, Tacotron2 by Shen et al., 2018, DeepVoice by Arik et al., 2017, 

Transformer TTS by Li et al., 2019, FastSpeech by Ren et al., 2019, ParaNet by Peng et al., 2020, Neural 

Codec Language Models (NCLMs) by Wang et al. (2023), Matcha-TTS (Mehta et al., 2024). AI-Powered 

TTS engines are advancements that have uplifted synthesized speech quality beyond traditional statistical 

parametric methods. These recent works utilize the state-of-the-art neural vocoders, a source-filter vocoder 

like WORLD (Arthur and Csapó 2024), which can synthesize much better audio quality that sounds very 

similar to natural human speech.   

However, despite these major advances in TTS, it is still a challenge for some languages to build high-quality 

and human-level systems, especially for low-resource languages, one of which is Kurdish (Abdullah et al., 

2024). Kurdish, spoken by over 30 million people, is one such language. It is divided into three main dialects: Central 

Kurdish (CKB, i.e. Sorani), Northern Kurdish (Kurmanji), and Southern Kurdish  (Abdullah and Veisi., 2022)  (Veisi et 

al., 2024). In the last few years, several works have been done for the Kurdish language.  In this direction, 

Muhamad and Veisi (2022) have worked on overcoming the problems of TTS in Kurdish by developing a 



Central Kurdish corpus and using Tacotron 2 with the HiFi-GAN vocoder for synthesizing high-quality 

human-like speech. Using English character embeddings and 10 hours of recorded audio, the system was rated 

as having a mean opinion score of 4.1, which is similar to other state-of-the-art synthesizers in other languages. 

The more advanced end-to-end TTS model for the Kurdish language, in this case, for the Sorani dialect, 

introduced the use of variational auto-encoders combined with adversarial learning and a stochastic duration 

predictor. The latter enhances text-to-speech conversion by aligning the latent distributions and including 

diverse rhythms, hence yielding a high MOS of 3.94, which has outperformed all existing one-stage and two-

stage systems with the measures used in naturalness and audio quality for RNN-TTS systems (Ahmad, H.A. 

and Rashid, T.A., 2024).  

Another research paper proposes an end-to-end TTS system for Central Kurdish (CKB), hence handling data 

sparsity. Three different training experiments were performed for Tacotron2 on a dataset of 21 hours of female 

voice. The one trained from scratch on the full dataset scored the highest in terms of naturalness and 

intelligibility according to the Mean Opinion Score (MOS) of 4.78 out of 5 compared to other models 

(Muhamad et al., 2024). In addition, the development of the Kurdish TTS for the Central Kurdish dialect still 

needs to be improved. It is characterized as a low-resource language with different phonetic and linguistic 

characteristics, which Vocoder's general models do not adequately cover the characteristics of Kurdish speech 

due to the phonetic differences between the source language and the target language. The lack of a vocoder 

trained specifically for the Kurdish language is one of the obstacles so far to the Kurdish TTS model. In 

general, the relevance of designing dedicated vocoders that better represent Kurdish speech lies within the 

need for targeted development for improved quality in TTS of low-resource languages.  

As a result., this paper makes several groundbreaking contributions to Kurdish speech synthesis. Firstly, it 

introduces the first TTS vocoder based on 21 hours of detailed speech data, which marks a significant 

advancement in Kurdish language technology. Secondly, we have successfully adapted the WaveGlow deep 

learning architecture (Prenger et al., 2019) to Kurdish, optimizing it for the unique acoustic properties of the 

language to ensure clear, natural speech output. Additionally, we have implemented advanced prosody 

modeling techniques to improve the rhythm, stress, and intonation of the synthesized speech, crucial for 

achieving lifelike speech quality. These enhancements not only push the boundaries of TTS for Kurdish but 

also offer scalable methodologies that can be applied to other Kurdish delict languages, broadening the impact 

of this work across different linguistic communities. 

 In the remainder of this paper, we elaborate on these themes in several sections: Section 2 discusses some 

recent advancements in TTS technology, focusing on Normalizing Flows and WaveGlow technology applied 

for developing low resource languages such as Kurdish. Section 3 presents the specific architecture of the 

adapted WaveGlow model for the Kurdish TTS. Section 4 presents the experimental results, and Section 5 

concludes with a summary of our findings and some future lines that this area of research might take. 

2. Related Works 

With the advancements in neural network-based text-to-speech (TTS) systems, generating high-quality, 

natural-sounding speech has become increasingly feasible. However, because to a lack of data and resources, 

expanding TTS systems for low-resource languages like Kurdish continues to be difficult. This section 

examines relevant TTS research, emphasizing methods that make use of vocoder and its variants. We examine 

several approaches and works in the field, highlighting their applicability and possible modifications for 

Kurdish text-to-speech. Furthermore, we pinpoint the shortcomings and difficulties in the current literature, 

which directs our strategy for enhancing voice synthesis vocoders for low-resource languages. 

Prenger et al. (2019) presented WaveGlow, a flow-based generative network for voice synthesis that integrates 

knowledge from WaveNet and Glow.  With this approach the Mel spectrograms are transformed into high-

quality speech using a single network and cost function. The realizations of WaveGlow are the efficient MOSs, 



the high sample rates of audio samples, and the equalized and consecutive training model. However, the model 

is very large and computationally expensive, which can be considered as major drawbacks of the presented 

approach. 

Cui et al. h proposed a new glottal neural vocoder in 2019. It employs glottal-source filters combined with 

vocal-tract filters by utilizing the hybrid neural network. While this vocoder delivers good amount of voice 

synthesis that is of good quality, it comes alongside with implementation issues. Other research that can be 

mentioned in this context is the work of Csapó et al. (2019) that explored WaveGlow voice synthesis for 

ultrasound-based articulatory-to-acoustic mapping. WaveGlow, specifically developed for speakers and silent 

speech interfaces targeting clients with speaking disorders, outperforms regular vocoders and has more 

realistic synthesized speech, research showed. A major limitation is the use of ultrasonic technology. 

Neural vocoder based on WaveNet was designed and presented by Oura et al. (2019); which is a very efficient 

neural vocoder attained especially for smooth real-time speech synthesizing. While this vocoder offers a very 

good quality synthesis it is very demanding in terms of the processing power needed. Extending the source-

filter model into a flow-based deep generative model, which was named as ExcitGlow that is a variant of 

WaveGlow and it specifically targets on the distribution of the excitation signal rather than the speech signal. 

This approach contributes to a drastic reduction of the model size from 87. 73 million to 15. When choosing 

between GAN-based and TTS systems, our study determines that the latter can achieve an adequate model 

size of 60 million parameters while maintaining the perceivable quality of synthesized speech. Nevertheless, 

the closed-loop training framework that has been proposed by ExcitGlow is not easy to be adopted. The study 

completed by Al-Radhi et al. (2019) aims to demonstrated the application of RNNs to sequence-to-sequence 

for voice synthesis through utilizing a continuous vocoder. The findings of the study show that RNN-based 

models including LSTM, BLSTM, and GRU are more superior to feed-forward DNNs in aspects of naiveness 

and prediction capability and has the potential of producing the highest performance in SPSS. An inherent 

disadvantage in this method is the high computational complexities of RNN-based models which may cause 

slow loading. Some studies that have been made include Debnath et al.’s (2020) study used Tacotron2 and 

WaveGlow to assess the effectiveness of TTS systems involving Sanskrit in low-resource contexts. Their 

strategy was focused on transfer learning and fine-tuning of the available models to achieve near excellent 

voice synthesis with a limited amount of available data. The major limitation of this method is in its reliance 

on pre-trained models. 

 

Ping and colleagues introduced WaveFlow for raw audio in 2020 in a flowing form that is concise and called 

flowing. This model adopts a dilated 2-D convolutional structure which captures long range structure as well 

as autoregressive functions in order to handle local changes. WaveFlow is significantly smaller and 

computational faster than WaveGlow that only requires 5. seventy-one billion ninety-one million parameters, 

and is capable of generating high-fidelity audio at a rate faster than real-time without the presence of a 

deliberately engineered inference kernel. However, the testing of this method has been limited to specific 

datasets, thus its application might be limited in other applications. Song et al. (2020) proposed efficient 

version of the WaveGlow, called Efficient WaveGlow or EWG for short This improvement is built on top of 

the previously mentioned model with primary intention of reducing number of parameters and increasing 

speed, while keeping the overall quality of the generated speech at descent level. In the EWG model, the 

WaveNet style transform network is replaced with the dilated convolution network utilizing FFTNet protocol. 

It also involves group convolution and it conveys local information between two layers. While it is 

conceivable that there may be trade-offs in quality for the large parameter reduction made, the improvements 

made are evident with alleviation in computing and inference time all while retaining high quality synthesis. 

The contribution of this work is the development of an enhanced technique for TTS synthesis for LRLs and 

provides a roadmap for further investigation. 



A paper that is similar to the earlier study was done by Muhamad and Veisi in April of 2022 and plans on 

creating a Central Kurdish text-to-voice (TTS) system. The present system used transfer learning techniques 

borrowed from an English model that had been pre-trained. In addition, 10 hours of voice data in Central 

Kurdish were also used in total, and the HiFi-GAN vocoder was used. Many vocoders such as Griffin-Lim, 

WaveGlow, and HiFi-GAN are explored by Kumar et al., (2023) in order to examine their applied use in TTS 

systems that were designed for extensively spoken low resource languages with a focus on the Indian region. 

WaveGlow has been identified as famous for being capable of producing vocal output of superior quality, 

however, the authors explained that there are more enhanced vocoders notably; HiFi-GAN who are becoming 

popular due to efficiency and higher quality.  

Ahmad and Rashid came up with new Terminated Text Synthesis (TTS) in Central Kurdish in 2024 based on 

end-to-end transformer. The suggested technique enhances the realism and intelligibility of the mapping of 

text-to-speech by learning mapping directly while using data augmentation methods to solve a problem of 

data shortage. Unquestionably, such an approach was quite useful; nonetheless, the method demanded much 

processing capacity and its success depended on the quality of the available corpus. In another previous study 

(Muhamad et al., 2024), we employed transfer learning from an English pre-trained model to train our initial 

model. However, we utilized a larger dataset (21 h) and substituted the HiFi-GAN vocoder with the 

WaveGlow vocoder, which was trained on an English pre-trained model. This modification resulted in the 

generation of speech with superior quality and a more authentic sound. The summary of the related studies is 

provided, highlighting their important elements in Table 1. 

 

Table 1: Summary of review on Vocoder technique for Speech Synthesis. 

Reference Methodology Advantages Disadvantages 

Cui et al. 2018 Glottal source + vocal tract 

filters, hybrid neural network 

High-quality, efficient 

synthesis 

Implementation complexity 

Prenger et al., 2019 Glow + WaveNet, single cost 

function 

High-quality speech, stable 

training 

High computational cost, 

large model size 

Al-Radhi et al., 2019 Sequence-to-sequence RNNs Improved naturalness, state-

of-the-art performance 

Computationally intensive 

Oura et al. 2019 WaveNet-style transform, 

optimized vocoder 

Real-time, high-quality 

synthesis 
High resource requirements 

Song et al., 2020 FFTNet-style, group 

convolution, shared local 

conditions 

Reduced computation, faster 

inference, smaller model 

Possible quality trade-offs 

Ping et al., 2020 2-D convolutions, 

autoregressive functions 

Smaller model, faster 

synthesis, high fidelity 

Limited dataset testing 

Oh et al., 2020 Source-filter model, flow-

based generative model 

Reduced model size, high-

quality synthesis 

Complex training framework 

Debnath et al. 2020 Transfer learning, fine-tuning 

Tacotron2 + WaveGlow 

High-quality synthesis with 

limited data 

Dependency on pre-trained 

models 

Csapó et al. 2020 Ultrasound tongue images to 

Mel-spectrograms 

Improved naturalness for 

silent speech interfaces 

Requires ultrasound 

equipment 

Muhamad and Veisi, 2022 Transfer learning, Tacotron2 

+ HiFi-GAN 

High-quality synthesis with 

limited data 

Dependency on pre-trained 

models 

Kumar et al. (2023) Tacotron 2 + WaveGlow, 

Griffin-Lim, and HiFi-GAN 

vocoders 

Applied several vocoders, 

conducting a comparative 

analysis. 

Data quality obtained from 

crowdsourcing can exhibit 

variability. 



Protocols for collecting 

scalable data. 

 

Restricted discourse on 

difficulties particular to 

language. 

Vocoders of superior quality 

may experience scaling 

challenge. 

 

Ahmad, H.A. and Rashid, 

T.A. (2024) 

end-to-end Transformer 

model 

High-quality synthesis  

Better Performance in Low-

Resource Settings 

High Computational 

Requirements 

Dependency on Data Quality 

Muhamad et al., 2024 Tacotron2 + WaveGlow High-quality speech Dependency on pre-trained 

models 

 

In conclusion, for low-resource languages like Kurdish, selecting an appropriate vocoder is crucial to balance 

quality and efficiency. Based on a review of previous works, WaveGlow stands out as a suitable choice. 

WaveGlow significantly reduces computational costs and model size while maintaining high-quality speech 

synthesis, making it well-suited for resource-constrained environments.  

3. Methodology 

In this section we discuss the speech corpus for the target language, with the proposed approach for enhancing TTS by 

training new WaveGlow for Kurdish language 

3.1 Kurdish Speech Corpus 

Train phase: In this study, we utilized the existing "Sabat Speech Corpus" (Muhamad et al., 2024) for training 

the vocoder WaveGlow, enhancing its capability to synthesize Central Kurdish speech. The corpus, which 

was previously compiled and contains 10,979 utterances across diverse categories such as news, sports, 

linguistics, psychology, poetry, health, scientific topics, general knowledge, interviews, politics, education, 

literature, narratives, tourism, and miscellaneous subjects.  

Table 2 presents a comprehensive breakdown of the different types of utterances and their respective counts, 

demonstrating the wide range of topics covered in our corpus. 
 

Table 2: The total of the train utterances (Muhamad et al., 2024) 

Category  No. of Utterances  

linguistics 1760 

questions and exclamation 1393 

story 1092 

poem 916 

tourism 782 

miscellaneous  700 

sport 683 

education and literature 619 

news 608 

science 543 

health 483 



politics 483 

general information 461 

interview  456 

Total 10,979 

 

This broad coverage is crucial for training a vocoder like WaveGlow, as it ensures that the system can 

accurately reproduce a wide range of phonetic and intonational nuances inherent to the Kurdish language. By 

leveraging this pre-existing corpus, we aim to improve the naturalness and expressiveness of synthesized 

Kurdish speech, addressing the unique challenges of speech synthesis in low-resource language settings. 

Summary Overview of the Sabat Speech Corpus is shown in Table 3. 

 

Table 3: Overview of the Sabat Speech Corpus (Muhamad et al., 2024) 

Feature Details 

Total Utterances 10,979 utterances 

Audio Length 21 hours total 

Sampling Rate 22,050 Hz 

Bit Depth 16 bits 

Channel Mono 

File Format WAV 

Categories News, Sport, Linguistics, Poem, Health, etc. 

Recording Environment Professional studio 

Speaker Profile Female, from Sulaymaniyah, in her thirties 

Text Normalization Applied AsoSoft Library Normalization tool1 

 

Test Phase: For the test set, 110 sentences were meticulously selected from texts covering 17 distinct subject 

areas (Muhamad et al., 2024), ensuring they were different from the training sentences to effectively gauge 

the TTS model's performance across diverse contexts. These sentences were sourced from several websites 

and refined to align with Central Kurdish orthography standards. This careful curation aims to test the TTS 

system's ability to handle a variety of linguistic challenges and assess its generalization capabilities across 

different types of content listed in Table 4. 

 

Table 4: Distribution of Test Set Sentences Across Topics (Muhamad et al., 2024) 

Topics No. of Sentences 

News 10 

Formal Letter 10 

Sport 9 

Poem 8 

 
1 https://github.com/AsoSoft/AsoSoft-Library  

https://github.com/AsoSoft/AsoSoft-Library


Questions 7 

Psychology 6 

Health 6 

Science 6 

Miscellaneous 6 

General Information 6 

Story 6 

Tourism 6 

Linguistics 5 

Interview 5 

Politics 5 

Education and Literature 5 

Exclamation 4 

Total 110 

3.2 Text to Speech  

The general design for this TTS model involves a two-stage process (Li et al., 2024). The first model converts 

text data into Mel spectrograms, and the second model takes these Mel spectrograms as input, producing 

binary sound wave representations. These sound waves, when played, generate human speech. This structure 

is illustrated in the accompanying diagram and showed in Figure 1. 

 

 

Figure 1: Text to Mel to Waveform 

 



3.2.1 Tacotron 2  

The methodology presented in our previous work (Muhamad et al., 2024), as shown in Figure 2, entails 

generating a dataset consisting of "text, audio" pairs from a single female speaker. This dataset is then 

subjected to preprocessing procedures, including text normalization, in order to prepare the data for our TTS 

system. For the prediction of Mel spectrograms, we utilized a sequence-to-sequence synthesis network that is 

based on Tacotron2 (Shen et al., 2018a). These spectrograms are then transformed into audible sounds using 

the WaveGlow vocoder (Prenger et al., 2019). Tacotron2's streamlined end-to-end design, including its 

acoustic model and vocoder stages, is well-suited for Kurdish because of its straightforward phonetic structure, 

which requires less input compared to more intricate languages. The proposed model utilized a recurrent 

neural network to produce Mel spectrograms from given textual input. Subsequently, the WaveGlow vocoder 

converts these spectrograms into waveforms. The Tacotron2 model and WaveGlow vocoder are trained 

separately on our comprehensive Kurdish voice corpus. 

 

 
Figure 2: The block diagram from our previously published methodology (Muhamad et al., 2024) 

 

3.2.2 Vocoder Architecture  

Figure 3 shows the conversion of the Mel spectrogram into speech waveform with help of WaveGlow vocoder. 

The first input is a Mel spectrogram, which graphically depicts the density of the frequencies in audio signal 

with respect to the time. As it will be explained later in this paper, the Mel spectrogram retains features of the 

audio that are critical for signal processing and analysis because they correspond with characteristics of human 

auditory processing. Subsequently, the Mel spectrogram undergoes the process called “Vocoder WaveGlow” 

which forms the end part of the proposed model. WaveGlow is a state-of-art generative model, aimed at the 

high-quality audio generation from Mel spectrograms (Debnath et al., 2020). A set of invertible 

transformations, the normalizing flows, is used to transform the data, the Mel spectrogram that has a simpler 

distribution than the distribution of the audio waveform. In so doing, WaveGlow transforms the Mel 

spectrogram back into the original signal and all its details into a waveform. The final product from the 

WaveGlow vocoder is a “Speech Waveform”. This waveform is the reconstructed audio signal which can be 

played and heard by human intervention as speeches being made. It has all the differential attributes of natural 



speech that is synthesized from the features embedded in Mel spectrogram. The speech waveform is the result 

that listeners hear, and it is generated to closely mimic natural human speech. It depicts the progression from 

the Mel spectrogram, which is a text-based or visual representation of sound frequencies, to the speech 

waveform, which is the audible output. The below figure demonstrates how the WaveGlow model bridges the 

gap between the abstract representation of audio in the form of a Mel spectrogram and the concrete, listenable 

speech waveform. The process underscores the capability of the WaveGlow vocoder to synthesize high-

quality, natural-sounding speech from a structured, frequency-based input. 

 

 

Figure 3: Overview key components and flowchart vocoder WavGlow Architecture 

A. WaveGlow 

WaveGlow, inspired by the Glow concept, offers faster synthesis compared to WaveNet (Oord et al., 2016). 

It employs an invertible transformation between blocks of eight time-domain audio samples and a standard 

normal distribution, conditioned on the log Mel-spectrogram (Mustafa et al., 2021). This transformation 

enables audio generation by sampling from this Gaussian density. The invertible transformation consists of a 

sequence of individual invertible transformations, known as normalizing flows. In WaveGlow, each flow is 

composed of a 1x1 convolutional layer followed by an affine coupling layer. The affine coupling layer is a 



neural transformation that predicts a scale and bias based on the input speech x and Mel-spectrogram 

𝑋. 𝐿𝑒𝑡 𝑊_𝑘 represent the learned weight matrix for the 𝑘 − 𝑡ℎ 1x1 convolutional layer and 𝑠_𝑗(𝑥, 𝑋) be the 

predicted scale value at the 𝑗 − 𝑡ℎ affine coupling layer. For inference, WaveGlow samples z from a uniform 

Gaussian distribution and applies the inverse transformations ( 𝑓^{−1} ) conditioned on the Mel spectrogram 

X to retrieve the speech sample x. Due to the simplicity of parallel sampling from the Gaussian distribution, 

all audio samples can be generated simultaneously. The model is trained to minimize the log-likelod of the 

clean speech samples x: 

𝑙𝑛𝑃( 𝑥 ∣ 𝑋 ) = 𝑙𝑛𝑃(𝑧) − ∑𝑗 = 0𝐽𝑙𝑛𝑠𝑗(𝑥, 𝑋) − ∑𝑘 = 0𝐾𝑙𝑛 ∣ 𝑊𝑘 ∣           𝐸𝑞(1) 

where 𝐽 is the number of coupling transformations and 𝐾 is the number of convolution layers. In 𝑃(𝑧), the 

parameter 𝜈^2 refers to the variance of the Gaussian distribution, and 𝜈 =  1 is used during training. 

WaveGlow uses an alternative to the logistic function in equation (1) for sampling. This system was 

implemented using 12 coupling layers, each with 8 layers of dilated convolution with 512 residual channels. 

The same architecture was adapted for the PR system using WaveGlow as its vocoder, referred to as PR-

WaveGlow. The architecture of the WaveGlow model is shown in Figure 4. 

 

Figure 4: The architecture of the WaveGlow model (Prenger et al., 2019). 

 

4 Results and Discussion 

4.1 TTS measure 

MOS is a commonly used measure in evaluating the quality of synthesized speech (Maguer et al., 2024). It 

involves human listeners rating the quality of speech samples on a predefined scale, typically from 1 to 5, 

where: 

• 1: Bad 

• 2: Poor 

• 3: Fair 

• 4: Good 



• 5: Excellent 

The MOS is calculated by averaging the scores given by all listeners for each speech sample. Equation (2) is 

utilized to ascertain the assessment of intelligibility and naturalness for MOS.  

 

MOS =
1

𝑵
∑ ∑ 𝑠𝑖

𝑁

𝑖=0
                      𝐸𝑞(2) 

Where: 

• 𝑁 is the number of listeners. 

• 𝑠𝑖  is the score given by the 𝑖 − 𝑡ℎ listener. 

For our evaluation, native Kurdish speakers rated the naturalness and intelligibility of the synthesized speech 

samples.  

 

4.2 Implementation Tools and Hyper-Parameters 

The training and implementation of the Kurdish WaveGlow model were conducted using two NVIDIA RTX 

4090 GPUs, providing a total of 48 GB of GPU memory. The system also utilized a total of 290 GB of RAM. 

The training parameters used for developing the Kurdish WaveGlow model are summarized in Table 5. 

 

Table 5: Training Parameters 

Parameter Value 

Batch Size 22 

Learning Rate 1e-4 with an exponential decay 

Optimizer Adam optimizer (beta1=0.9, beta2=0.999) 

Number of Epochs 100000 

Sigma 1.0 

Iterations per Checkpoint 2000 

Seed 1234 

 

The parameters in Table 5 describe the settings used to train the Kurdish WaveGlow model. The batch size 

indicates the number of samples processed before the model is updated. The learning rate defines the step size 

for weight updates. The optimizer used is Adam, known for its efficiency and adaptive learning rate 

capabilities. Training was conducted for 100,000 epochs to ensure comprehensive learning, with intermediate 

checkpoints saved every 2000 iterations. A fixed seed ensures the reproducibility of the results. 



 

Table 6: Data Configuration Parameters 

Parameter Value 

Segment Length 16000 

Sampling Rate 22050 Hz 

Filter Length 1024 

Hop Length 256 

Win Length 1024 

Mel Frequency Min 0.0 

Mel Frequency Max 8000.0 

Table 6 details the data configuration parameters used during the preprocessing stage. These settings ensure 

the audio data is correctly formatted and segmented for training. The segment length specifies the number of 

audio samples per segment, while the sampling rate defines the number of samples per second. Filter length, 

hop length, and win length are used in the Short-Time Fourier Transform (STFT) process to convert audio 

signals into Mel-spectrograms. Mel frequency parameters set the range of frequencies to be included in the 

Mel-spectrogram. 

 

Table 7: WaveGlow Configuration Parameters 

Parameter Value 

Number of Mel Channels 80 

Number of Flows 12 

Group Size 8 

Early Every 4 

Early Size 2 

- Layers 8 

- Channels 256 

- Kernel Size 3 

 

Table 7 provides the configuration parameters specific to the WaveGlow model. The number of Mel channels 

indicates the dimensionality of the Mel-spectrogram features. The number of flows specifies the layers of 

transformations used to map the Mel-spectrogram to audio. Group size determines the number of samples 

processed together in the model, while early every and early size parameters control the early output of 

samples to improve efficiency. The WaveNet configuration includes the number of layers, channels, and 

kernel size used in the WaveGlow network to generate high-fidelity audio. 

 



4.3 Experimental Results 

The Kurdish WaveGlow model was trained from scratch using the Sabat Speech Corpus, which consists of 

21 hours of high-quality, annotated speech data. The training process did not involve any pre-trained models 

or fine-tuning; instead, the model was developed entirely from the ground up to ensure it could fully adapt to 

the unique characteristics of the Kurdish language. The training process spanned a total of 5 days, with each 

day comprising 24 hours of continuous training, amounting to 120 hours in total. The model was configured 

to save checkpoints every 2000 iterations, resulting in a total of 2,702,000 checkpoints throughout the training 

period. This extensive training and checkpointing allowed for meticulous tracking of the model's performance 

and adjustments as needed. Throughout the training period, the model demonstrated steady convergence, with 

a consistent decrease in training loss. This indicates that the model effectively learned the acoustic properties 

and linguistic nuances of Kurdish speech from the Sabat Corpus. 

 

4.4 Evaluations  

For the MOS evaluation, 110 random sentences from various categories were selected, ensuring these 

sentences were not part of the training set. The categories included news, sports, linguistics, psychology, 

poetry, health, questions, exclamations, science, miscellaneous, general information, interviews, politics, 

education and literature, stories, tourism, and SMS. This diverse selection ensured a comprehensive 

assessment of the model's performance across different types of content. 

• Raters: Twelve native Kurdish speakers (7 males and 5 females, aged 21 to 46) participated in the 

MOS evaluation. They listened to the synthesized sentences using headphones to ensure consistent 

audio quality and rated each sentence on the 5-point Likert scale. 

The results of the MOS evaluation for each category for the Kurdish Tacotron2-Scratch (Muhamad et al., 

2024) WaveGlow Kurdish-Scratch model are shown in Figure 5. 

 



 

Figure 5: MOS Results for Kurdish Tacotron2-Scratch (Muhamad et al., 2024) WaveGlow Kurdish-Scratch 

 

These MOS results highlight the high performance of the Kurdish Tacotron2-Scratch (Muhamad et al., 2024) 

WaveGlow Kurdish-Scratch model across various content categories, reflecting its ability to generate natural 

and intelligible Kurdish speech. 

 

4.5 Comparative Analysis of Kurdish TTS: WaveGlow (Kurdish) vs. Vocoders (English Pre-trained) 

This time the comparison was made between the TTS models trained from scratch on the Kurdish-specific 

corpus and the models incorporated with the English pre-trained WaveGlow. The comparison is made in view 

of the average MOS of all the models and also of each genre and sub-genre of contents. This analysis gives 

performance information of the synthesized speech and the extent of naturalness of the synthesized speech by 

the different training approaches. Table 8 below also demonstrates the MOS for different content 

classifications. These results highlight the performance differences between genuine voice samples and the 

three models: Kurdish Tacotron2 pre-trained with HiFi-GAN English pre-trained and Kurdish Tacotron2 

scratch with WaveGlow English pre-trained and the proposed model Kurdish Tacotron2 scratch with 

WaveGlow vocoder that train for Kurdish dataset only. 

 

Table 8: MOS Results for Different Kurdish Models Benchmark by Category 

Category MOS 

(Genuine 

Voice) 

Kurdish Tacotron2-Pretrain 

with HiFi-GAN English Pre-

trained (Muhamad, and 

Veisi., 2022) 

Kurdish Tacotron2-Scratch 

with WaveGlow English 

Pre-trained (Muhamad et 

al., 2024) 

Our model (Kurdish 

Tacotron2-Scratch with 

WaveGlow Kurdish-

Scratch) 

News 5.0 4.2 4.5 4.92 

Sports 4.9 4.1 4.4 4.75 

Linguistics 4.8 4.0 4.3 4.93 

4.75 4.75
4.78

4.83

4.88
4.91 4.91 4.92 4.92 4.93 4.93 4.94

4.96 4.96 4.97
4.99 5 5

4.6

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

Sport Story Politics Poem Interview

Overall SMS General Information News Education & Literature

Linguistics Miscellaneous Exclamation Questions Psychology

Health Science Tourism

MOS



Psychology 5.0 4.3 4.6 4.97 

Poem 4.9 4.2 4.5 4.83 

Health 4.8 4.1 4.4 4.99 

Questions 5.0 4.2 4.5 4.96 

Exclamation 5.0 4.2 4.5 4.96 

Science 4.9 4.1 4.4 5.00 

Miscellaneous 4.8 4.0 4.3 4.94 

General Info 4.9 4.2 4.5 4.92 

Interviews 4.9 4.2 4.5 4.88 

Politics 5.0 4.3 4.6 4.78 

Education & 

Lit 

4.8 4.0 4.3 4.93 

Story 4.9 4.2 4.5 4.75 

Tourism 4.9 4.2 4.5 5.00 

SMS 4.8 4.0 4.3 4.91 

 

These results demonstrate that the Tacotron2-Scratch (WaveGlow Kurdish-Scratch) model consistently 

outperformed the other models across all categories. The genuine voice samples, as expected, received the 

highest MOS scores. However, the Kurdish-Scratch model closely followed, indicating a high level of 

naturalness and intelligibility in the synthesized speech. To provide a comprehensive comparison, the overall 

MOS results for each model were averaged across all categories. Figure 6 analysis highlights the general 

performance and quality of the synthesized speech for each model. 

 

 

Figure 6: Comparative Analysis of MOS Results for Kurdish Models Benchmark 
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The MOS results clearly indicate that the Tacotron2-Scratch (WaveGlow Kurdish-Scratch) model achieved 

significantly higher scores compared to the models based on English pre-trained WaveGlow. The Kurdish-

Scratch model's MOS of 4.78 highlights its ability to generate highly natural and intelligible Kurdish speech, 

closely approximating genuine voice samples. The lower MOS scores for the Tacotron2-Pre-train (HiFi-GAN) 

English Pre-trained (Muhamad, and Veisi., 2022) model reflect the limitations of adapting a pre-trained model 

to a low-resource language like Kurdish. While it still performed reasonably well, it struggled with 

pronunciation and naturalness compared to the Kurdish-specific model trained from scratch. Overall, these 

results emphasize the importance of training TTS models from scratch using language-specific data to achieve 

the highest quality of synthesized speech. The Kurdish-Scratch model's superior performance demonstrates 

the effectiveness of this approach for low-resource languages. 

 

5. Summery and Future Works 

This work has made significant improvements for TTS technology for Kurdish language especially for 

Kurdish WaveGlow vocoder to synthesis Kurdish speech. The final outcome of our study is the integration of 

an individual TTS system with the help of 21hrs of clean labelled speech from the Sabat Speech Corpus. This 

system is therefore devised to accommodate the architectural and development feature of the Kurdish language 

which is both a popular teaching language and a restricted resource language. These improvements were made 

through the application of more advanced techniques of prosody modeling to the WaveGlow model: 

experimental modifications to synthesize Kurdish. All these improvements are thus necessary in order to 

achieve an accurate and realistic quality. Besides enhancing the intelligibility and the naturalness of the voice 

output, the obtained TTS system generates a versatile paradigm that can be extended to other LR languages 

and, consequently, may revolutionize TTS solutions in overlooked linguistic environments. 

They also statistically substantiate that our Kurdish-specific proposed model has relatively larger (MOS) in 

various contents compared to the models with employ the English pre-trained systems identified in the 

experiments. This underlines the inherent problem of the lack of language-specific TTS models as it is the 

only way to ensure the correctness and accurate translation of generated speech. The successful 

implementation and evaluation of this Kurdish TTS system set the benchmark for future works inside the field 

of speech synthesis and particularly for languages with limited resources. This precedes possibilities to create 

speech-based systems that are more accessible to those with disabilities, as well as caters for the fact that 

people across the globe use different languages. Thus, in the future, the focus will be on improving these 

approaches, expanding the data base including various linguistic data and increasing the efficiency of the 

system to relate to the complex linguistic and acoustic challenges of the Kurdish language and other low-

resource languages. Besides extending the progress of technology in the enhancement of Kurdish digital 

resources our project also contributes to the discourse on language conservation and digital opportunity. 
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